3.2.74 \(\int \frac {(a+b x^2)^2}{x^2 (c+d x^2)} \, dx\)

Optimal. Leaf size=55 \[ -\frac {a^2}{c x}-\frac {(b c-a d)^2 \tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )}{c^{3/2} d^{3/2}}+\frac {b^2 x}{d} \]

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 55, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {461, 205} \begin {gather*} -\frac {a^2}{c x}-\frac {(b c-a d)^2 \tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )}{c^{3/2} d^{3/2}}+\frac {b^2 x}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)^2/(x^2*(c + d*x^2)),x]

[Out]

-(a^2/(c*x)) + (b^2*x)/d - ((b*c - a*d)^2*ArcTan[(Sqrt[d]*x)/Sqrt[c]])/(c^(3/2)*d^(3/2))

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 461

Int[(((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegr
and[((e*x)^m*(a + b*x^n)^p)/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[n
, 0] && IGtQ[p, 0] && (IntegerQ[m] || IGtQ[2*(m + 1), 0] ||  !RationalQ[m])

Rubi steps

\begin {align*} \int \frac {\left (a+b x^2\right )^2}{x^2 \left (c+d x^2\right )} \, dx &=\int \left (\frac {b^2}{d}+\frac {a^2}{c x^2}-\frac {(b c-a d)^2}{c d \left (c+d x^2\right )}\right ) \, dx\\ &=-\frac {a^2}{c x}+\frac {b^2 x}{d}-\frac {(b c-a d)^2 \int \frac {1}{c+d x^2} \, dx}{c d}\\ &=-\frac {a^2}{c x}+\frac {b^2 x}{d}-\frac {(b c-a d)^2 \tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )}{c^{3/2} d^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 55, normalized size = 1.00 \begin {gather*} -\frac {a^2}{c x}-\frac {(b c-a d)^2 \tan ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )}{c^{3/2} d^{3/2}}+\frac {b^2 x}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)^2/(x^2*(c + d*x^2)),x]

[Out]

-(a^2/(c*x)) + (b^2*x)/d - ((b*c - a*d)^2*ArcTan[(Sqrt[d]*x)/Sqrt[c]])/(c^(3/2)*d^(3/2))

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a+b x^2\right )^2}{x^2 \left (c+d x^2\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[(a + b*x^2)^2/(x^2*(c + d*x^2)),x]

[Out]

IntegrateAlgebraic[(a + b*x^2)^2/(x^2*(c + d*x^2)), x]

________________________________________________________________________________________

fricas [A]  time = 0.88, size = 164, normalized size = 2.98 \begin {gather*} \left [\frac {2 \, b^{2} c^{2} d x^{2} - 2 \, a^{2} c d^{2} - {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \sqrt {-c d} x \log \left (\frac {d x^{2} + 2 \, \sqrt {-c d} x - c}{d x^{2} + c}\right )}{2 \, c^{2} d^{2} x}, \frac {b^{2} c^{2} d x^{2} - a^{2} c d^{2} - {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \sqrt {c d} x \arctan \left (\frac {\sqrt {c d} x}{c}\right )}{c^{2} d^{2} x}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2/x^2/(d*x^2+c),x, algorithm="fricas")

[Out]

[1/2*(2*b^2*c^2*d*x^2 - 2*a^2*c*d^2 - (b^2*c^2 - 2*a*b*c*d + a^2*d^2)*sqrt(-c*d)*x*log((d*x^2 + 2*sqrt(-c*d)*x
 - c)/(d*x^2 + c)))/(c^2*d^2*x), (b^2*c^2*d*x^2 - a^2*c*d^2 - (b^2*c^2 - 2*a*b*c*d + a^2*d^2)*sqrt(c*d)*x*arct
an(sqrt(c*d)*x/c))/(c^2*d^2*x)]

________________________________________________________________________________________

giac [A]  time = 0.34, size = 63, normalized size = 1.15 \begin {gather*} \frac {b^{2} x}{d} - \frac {a^{2}}{c x} - \frac {{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \arctan \left (\frac {d x}{\sqrt {c d}}\right )}{\sqrt {c d} c d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2/x^2/(d*x^2+c),x, algorithm="giac")

[Out]

b^2*x/d - a^2/(c*x) - (b^2*c^2 - 2*a*b*c*d + a^2*d^2)*arctan(d*x/sqrt(c*d))/(sqrt(c*d)*c*d)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 85, normalized size = 1.55 \begin {gather*} -\frac {a^{2} d \arctan \left (\frac {d x}{\sqrt {c d}}\right )}{\sqrt {c d}\, c}+\frac {2 a b \arctan \left (\frac {d x}{\sqrt {c d}}\right )}{\sqrt {c d}}-\frac {b^{2} c \arctan \left (\frac {d x}{\sqrt {c d}}\right )}{\sqrt {c d}\, d}+\frac {b^{2} x}{d}-\frac {a^{2}}{c x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^2/x^2/(d*x^2+c),x)

[Out]

b^2*x/d-1/c*d/(c*d)^(1/2)*arctan(1/(c*d)^(1/2)*d*x)*a^2+2/(c*d)^(1/2)*arctan(1/(c*d)^(1/2)*d*x)*a*b-c/d/(c*d)^
(1/2)*arctan(1/(c*d)^(1/2)*d*x)*b^2-a^2/c/x

________________________________________________________________________________________

maxima [A]  time = 2.39, size = 63, normalized size = 1.15 \begin {gather*} \frac {b^{2} x}{d} - \frac {a^{2}}{c x} - \frac {{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \arctan \left (\frac {d x}{\sqrt {c d}}\right )}{\sqrt {c d} c d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2/x^2/(d*x^2+c),x, algorithm="maxima")

[Out]

b^2*x/d - a^2/(c*x) - (b^2*c^2 - 2*a*b*c*d + a^2*d^2)*arctan(d*x/sqrt(c*d))/(sqrt(c*d)*c*d)

________________________________________________________________________________________

mupad [B]  time = 0.12, size = 80, normalized size = 1.45 \begin {gather*} \frac {b^2\,x}{d}-\frac {a^2}{c\,x}-\frac {\mathrm {atan}\left (\frac {\sqrt {d}\,x\,{\left (a\,d-b\,c\right )}^2}{\sqrt {c}\,\left (a^2\,d^2-2\,a\,b\,c\,d+b^2\,c^2\right )}\right )\,{\left (a\,d-b\,c\right )}^2}{c^{3/2}\,d^{3/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^2)^2/(x^2*(c + d*x^2)),x)

[Out]

(b^2*x)/d - a^2/(c*x) - (atan((d^(1/2)*x*(a*d - b*c)^2)/(c^(1/2)*(a^2*d^2 + b^2*c^2 - 2*a*b*c*d)))*(a*d - b*c)
^2)/(c^(3/2)*d^(3/2))

________________________________________________________________________________________

sympy [B]  time = 0.54, size = 165, normalized size = 3.00 \begin {gather*} - \frac {a^{2}}{c x} + \frac {b^{2} x}{d} + \frac {\sqrt {- \frac {1}{c^{3} d^{3}}} \left (a d - b c\right )^{2} \log {\left (- \frac {c^{2} d \sqrt {- \frac {1}{c^{3} d^{3}}} \left (a d - b c\right )^{2}}{a^{2} d^{2} - 2 a b c d + b^{2} c^{2}} + x \right )}}{2} - \frac {\sqrt {- \frac {1}{c^{3} d^{3}}} \left (a d - b c\right )^{2} \log {\left (\frac {c^{2} d \sqrt {- \frac {1}{c^{3} d^{3}}} \left (a d - b c\right )^{2}}{a^{2} d^{2} - 2 a b c d + b^{2} c^{2}} + x \right )}}{2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**2/x**2/(d*x**2+c),x)

[Out]

-a**2/(c*x) + b**2*x/d + sqrt(-1/(c**3*d**3))*(a*d - b*c)**2*log(-c**2*d*sqrt(-1/(c**3*d**3))*(a*d - b*c)**2/(
a**2*d**2 - 2*a*b*c*d + b**2*c**2) + x)/2 - sqrt(-1/(c**3*d**3))*(a*d - b*c)**2*log(c**2*d*sqrt(-1/(c**3*d**3)
)*(a*d - b*c)**2/(a**2*d**2 - 2*a*b*c*d + b**2*c**2) + x)/2

________________________________________________________________________________________